Mathematics – Quantum Algebra
Scientific paper
1997-12-30
Mathematics
Quantum Algebra
36 pages, 3 figures under bezier.sty, corrected some typos
Scientific paper
We investigate different Hopf algebras associated to Yang's solution of quantum Yang-Baxter equation. It is shown that for the precise definition of the algebra one needs the commutation relations for the deformed algebra of formal currents and the specialization of the Riemann problem for the currents. Two different Riemann problems are considered. They lead to the central extended Yangian double associated with ${sl}_2$ and to the degeneration of scaling limit of elliptic affine algebra. Unless the defining relations for the generating functions of the both algebras coincide their properties and the theory of infinite-dimensional representations are quite different. We discuss also the Riemann problem for twisted algebras and for scaled elliptic algebra.
Khoroshkin Sergei
Lebedev Dimitri
Pakuliak Stanislav
No associations
LandOfFree
Yangian Algebras and Classical Riemann Problems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Yangian Algebras and Classical Riemann Problems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Yangian Algebras and Classical Riemann Problems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-412133