Well-posedness of the Viscous Boussinesq System in Besov Spaces of Negative Order Near Index $s=-1$

Mathematics – Analysis of PDEs

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

18 pages

Scientific paper

This paper is concerned with well-posedness of the Boussinesq system. We prove that the $n$ ($n\ge2$) dimensional Boussinesq system is well-psoed for small initial data $(\vec{u}_0,\theta_0)$ ($\nabla\cdot\vec{u}_0=0$) either in $({B}^{-1}_{\infty,1}\cap{B^{-1,1}_{\infty,\infty}})\times{B}^{-1}_{p,r}$ or in ${B^{-1,1}_{\infty,\infty}}\times{B}^{-1,\epsilon}_{p,\infty}$ if $r\in[1,\infty]$, $\epsilon>0$ and $p\in(\frac{n}{2},\infty)$, where $B^{s,\epsilon}_{p,q}$ ($s\in\mathbb{R}$, $1\leq p,q\leq\infty$, $\epsilon>0$) is the logarithmically modified Besov space to the standard Besov space $B^{s}_{p,q}$. We also prove that this system is well-posed for small initial data in $({B}^{-1}_{\infty,1}\cap{B^{-1,1}_{\infty,\infty}})\times({B}^{-1}_{\frac{n}{2},1}\cap{B^{-1,1}_{\frac{n}{2},\infty}})$.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Well-posedness of the Viscous Boussinesq System in Besov Spaces of Negative Order Near Index $s=-1$ does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Well-posedness of the Viscous Boussinesq System in Besov Spaces of Negative Order Near Index $s=-1$, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Well-posedness of the Viscous Boussinesq System in Besov Spaces of Negative Order Near Index $s=-1$ will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-27554

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.