Mathematics – Metric Geometry
Scientific paper
2012-04-07
Mathematics
Metric Geometry
41 pages, 8 color figures
Scientific paper
For a certain class of configurations of points in space, Eves' Theorem gives a ratio of products of distances that is invariant under projective transformations, generalizing the cross-ratio for four points on a line. We give a generalization of Eves' theorem, which applies to a larger class of configurations and gives an invariant with values in a weighted projective space. We also show how the complex version of the invariant can be determined from classically known ratios of products of determinants, while the real version of the invariant can distinguish between configurations that the classical invariants cannot.
No associations
LandOfFree
Weighted Projective Spaces and a Generalization of Eves' Theorem does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Weighted Projective Spaces and a Generalization of Eves' Theorem, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Weighted Projective Spaces and a Generalization of Eves' Theorem will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-509066