Biology – Quantitative Biology – Genomics
Scientific paper
2010-12-11
Lecture Notes in Computer Science 6577 (2011), pp. 124-133
Biology
Quantitative Biology
Genomics
The 15th Annual International Conference on Research in Computational Molecular Biology (RECOMB), 2011. (to appear)
Scientific paper
10.1007/978-3-642-20036-6_13
Genomic distance between two genomes, i.e., the smallest number of genome rearrangements required to transform one genome into the other, is often used as a measure of evolutionary closeness of the genomes in comparative genomics studies. However, in models that include rearrangements of significantly different "power" such as reversals (that are "weak" and most frequent rearrangements) and transpositions (that are more "powerful" but rare), the genomic distance typically corresponds to a transformation with a large proportion of transpositions, which is not biologically adequate. Weighted genomic distance is a traditional approach to bounding the proportion of transpositions by assigning them a relative weight {\alpha} > 1. A number of previous studies addressed the problem of computing weighted genomic distance with {\alpha} \leq 2. Employing the model of multi-break rearrangements on circular genomes, that captures both reversals (modelled as 2-breaks) and transpositions (modelled as 3-breaks), we prove that for {\alpha} \in (1,2], a minimum-weight transformation may entirely consist of transpositions, implying that the corresponding weighted genomic distance does not actually achieve its purpose of bounding the proportion of transpositions. We further prove that for {\alpha} \in (1,2), the minimum-weight transformations do not depend on a particular choice of {\alpha} from this interval. We give a complete characterization of such transformations and show that they coincide with the transformations that at the same time have the shortest length and make the smallest number of breakages in the genomes. Our results also provide a theoretical foundation for the empirical observation that for {\alpha} < 2, transpositions are favored over reversals in the minimum-weight transformations.
Alekseyev Max A.
Jiang Shuai
No associations
LandOfFree
Weighted genomic distance can hardly impose a bound on the proportion of transpositions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Weighted genomic distance can hardly impose a bound on the proportion of transpositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Weighted genomic distance can hardly impose a bound on the proportion of transpositions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-105453