Mathematics – Analysis of PDEs
Scientific paper
2004-02-02
Arch. Rat. Mech. Anal. v. 179 no. 3 (2006) 353-387
Mathematics
Analysis of PDEs
49 pages, no figures, submitted for publication
Scientific paper
Enstrophy, half the integral of the square of vorticity, plays a role in 2D turbulence theory analogous to that played by kinetic energy in the Kolmogorov theory of 3D turbulence. It is therefore interesting to obtain a description of the way enstrophy is dissipated at high Reynolds number. In this article we explore the notions of viscous and transport enstrophy defect, which model the spatial structure of the dissipation of enstrophy. These notions were introduced by G. Eyink in an attempt to reconcile the Kraichnan-Batchelor theory of 2D turbulence with current knowledge of the properties of weak solutions of the equations of incompressible and ideal fluid motion. Three natural questions arise from Eyink's theory: (1) Existence of the enstrophy defects (2) Conditions for the equality of transport and viscous enstrophy defects (3) Conditions for the vanishing of the enstrophy defects. In [Nonlinearity, v 14 (2001) 787-802], Eyink proved a number of results related to these questions and formulated a conjecture on how to answer these problems in a physically meaningful context. In the present article we improve and extend some of Eyink's results and present a counterexample to his conjecture.
Lopes Filho Milton C.
Mazzucato Anna L.
Nussenzveig Lopes Helena J.
No associations
LandOfFree
Weak solutions, renormalized solutions and enstrophy defects in 2D turbulence does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Weak solutions, renormalized solutions and enstrophy defects in 2D turbulence, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Weak solutions, renormalized solutions and enstrophy defects in 2D turbulence will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-627718