Weak convergence towards two independent Gaussian processes from a unique Poisson process

Mathematics – Probability

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

11 pages

Scientific paper

We consider two independent Gaussian processes that admit a representation in terms of a stochastic integral of a deterministic kernel with respect to a standard Wiener process. In this paper we construct two families of processes, from a unique Poisson process, the finite dimensional distributions of which converge in law towards the finite dimensional distributions of the two independent Gaussian processes. As an application of this result we obtain families of processes that converge in law towards fractional Brownian motion and sub-fractional Brownian motion.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Weak convergence towards two independent Gaussian processes from a unique Poisson process does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Weak convergence towards two independent Gaussian processes from a unique Poisson process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Weak convergence towards two independent Gaussian processes from a unique Poisson process will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-527420

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.