Voyager Interactive Web Interface to EarthScope

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

6605 Education

Scientific paper

Visualization of data is essential in helping scientists and students develop a conceptual understanding of relationships among many complex types of data and keep track of large amounts of information. Developed initially by UNAVCO for study of global-scale geodynamic processes, the Voyager map visualization tools have evolved into interactive, web-based map utilities that can make scientific results accessible to a large number and variety of educators and students as well as the originally targeted scientists. A portal to these map tools can be found at: http://jules.unavco.org. The Voyager tools provide on-line interactive data visualization through pre-determined map regions via a simple HTML/JavaScript interface (for large numbers of students using the tools simultaneously) or through student-selectable areas using a Java interface to a Generic Mapping Tools (GMT) engine. Students can access a variety of maps, satellite images, and geophysical data at a range of spatial scales for the earth and other planets of the solar system. Students can also choose from a variety of base maps (satellite mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others) and can then add a number of geographic and geophysical overlays, for example coastlines, political boundaries, rivers and lakes, earthquake and volcano locations, stress axes, and observed and model plate motion, as well as deformation velocity vectors representing a compilation of over 5000 geodetic measurements from around the world. The related educational website, "Exploring our Dynamic Planet", (http://www.dpc.ucar.edu/VoyagerJr/jvvjrtool.html) incorporates background materials and curricular activities that encourage students to explore Earth processes. One of the present curricular modules is designed for high school students or introductory-level undergraduate non-science majors. The purpose of the module is for students to examine real data to investigate how plate tectonic processes are reflected in observed geophysical phenomena. Constructing maps by controlling map parameters and answering open-ended questions which describe, compare relationships, and work with both observed and model data, promote conceptual understanding of plate tectonics and related processes. The goals of curricular development emphasize inquiry, development of critical thinking skills, and student-centered interests. Custom editions of the map utility have been made as the "Jules Verne Voyager" and "Voyager Junior", for the International Lithosphere Project's "Global Strain Rate Map", and for EarthScope Education and Outreach as "EarthScope Voyager Jr.". For the latter, a number of EarthScope-specific features have been added, including locations of proposed USArray (seismic), Plate Boundary Observatory (geodetic), and San Andreas Fault Observatory at Depth sites, plus detailed maps and geographically referenced examples of EarthScope-related scientific investigations. As EarthScope develops, maps will be updated in `real time' so that students of all ages can use the data in formal and informal educational settings.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Voyager Interactive Web Interface to EarthScope does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Voyager Interactive Web Interface to EarthScope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Voyager Interactive Web Interface to EarthScope will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1455618

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.