Computer Science – Artificial Intelligence
Scientific paper
2011-08-25
Computer Science
Artificial Intelligence
13 pages including 3 figures. This is the full version of a paper at ICTAI-2011 (http://www.cse.fau.edu/ictai2011/)
Scientific paper
In a knowledge discovery process, interpretation and evaluation of the mined results are indispensable in practice. In the case of data clustering, however, it is often difficult to see in what aspect each cluster has been formed. This paper proposes a method for automatic and objective characterization or "verbalization" of the clusters obtained by mixture models, in which we collect conjunctions of propositions (attribute-value pairs) that help us interpret or evaluate the clusters. The proposed method provides us with a new, in-depth and consistent tool for cluster interpretation/evaluation, and works for various types of datasets including continuous attributes and missing values. Experimental results with a couple of standard datasets exhibit the utility of the proposed method, and the importance of the feedbacks from the interpretation/evaluation step.
Iwasaki Tatsuya
Kameya Yoshitaka
Nakamura Satoru
Sato Taisuke
No associations
LandOfFree
Verbal Characterization of Probabilistic Clusters using Minimal Discriminative Propositions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Verbal Characterization of Probabilistic Clusters using Minimal Discriminative Propositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Verbal Characterization of Probabilistic Clusters using Minimal Discriminative Propositions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-318672