- LandOfFree
- Scientists
- Mathematics
- Differential Geometry
Details
Vectors of Higher Rank on a Hadamard Manifold with Compact Quotient
Vectors of Higher Rank on a Hadamard Manifold with Compact Quotient
2003-11-03
-
arxiv.org/abs/math/0311025v1
Mathematics
Differential Geometry
iv + 128 pages, 13 figures, Dissertation Universitaet Zuerich 2003
Scientific paper
Consider a closed, smooth manifold M of nonpositive sectional curvature. Write p:UM-> M for the unit tangent bundle over M and let R_> denote the subset consisting of all vectors of higher rank. This subset is closed and invariant under the geodesic flow on UM. We will define the structured dimension sdim(R_>) which, essentially, is the dimension of the set p(R_>) of base points of R_>. The main result holds for manifolds with sdim(R_>) < dim(M)/2: For every E>0 there is an E-dense, flow invariant, closed subset Z_E in UM R_> such that p(Z_E)=M. For every point in M this means that through this point there is a complete geodesic for which the velocity vector field avoids a neighbourhood of R_>. Gegeben sei eine geschlossene, glatte Mannigfaltigkeit M nichtpositiver Schnittkruemmung. Das Einheitstangentialbuendel sei mit p:UM-> M bezeichnet und die Teilmenge aller Vektoren hoeheren Ranges mit R_>. Diese Teilmenge ist abgeschlossen und invariant unter dem geodaetischen Fluss auf UM. Wir definieren die Strukturdimension sdim(R_>) von R_>, die, im Wesentlichen, die Dimension der Fusspunktmenge p(R_>) misst. Das Hauptergebnis gilt unter der Bedingung, dass sdim(R_>) < dim(M)/2 gilt: Fuer jedes E>0 gibt es eine E-dichte, flussinvariante, abgeschlossene Teilmenge Z_E in UM R_>, fuer die gilt p(Z_E) = M. Dies bedeutet, dass es durch jeden Punkt in M eine vollstaendige Geodaete gibt, deren Geschwindigkeitsfeld eine Umgebung von R_> vermeidet.
Affiliated with
Also associated with
No associations
LandOfFree
Say what you really think
Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.
Rating
Vectors of Higher Rank on a Hadamard Manifold with Compact Quotient does not yet have a rating.
At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Vectors of Higher Rank on a Hadamard Manifold with Compact Quotient, we encourage you to share that experience with our LandOfFree.com community.
Your opinion is very important and Vectors of Higher Rank on a Hadamard Manifold with Compact Quotient will most certainly appreciate the feedback.
Rate now
Profile ID: LFWR-SCP-O-264868
All data on this website is collected from public sources.
Our data reflects the most accurate information available at the time of publication.