Mathematics – Differential Geometry
Scientific paper
2010-10-13
Mathematics
Differential Geometry
24pages
Scientific paper
We prove that if $B$ is a $k$-positive holomorphic line bundle on a compact
hyperk\"ahler manifold $M,$ then $H^p (M,\Omega^q\otimes B)=0$ for
$p>n+[\frac{k}{2}]$ and any nonnegative integer $q.$ In a special case $k=0$
and $q=0$ we recover a vanishing theorem of Verbitsky's with a little stronger
assumption.
Yang Qi-Lin
No associations
LandOfFree
Vanishing Theorems on Compact Hyperkähler Manifolds does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Vanishing Theorems on Compact Hyperkähler Manifolds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vanishing Theorems on Compact Hyperkähler Manifolds will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-226089