Astronomy and Astrophysics – Astrophysics
Scientific paper
Dec 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007jgrd..11224s44t&link_type=abstract
Journal of Geophysical Research, Volume 112, Issue D24, CiteID D24S44
Astronomy and Astrophysics
Astrophysics
30
Atmospheric Composition And Structure: Radiation: Transmission And Scattering, Global Change: Remote Sensing (1855), Solar Physics, Astrophysics, And Astronomy: Solar Irradiance
Scientific paper
The Dutch-Finnish Ozone Monitoring Instrument (OMI) on board the NASA EOS Aura spacecraft is a nadir viewing spectrometer that measures solar reflected and backscattered light in a selected range of the ultraviolet and visible spectrum. The instrument has a 2600 km wide viewing swath and it is capable of daily, global contiguous mapping. The Finnish Meteorological Institute and NASA Goddard Space Flight Center have developed a surface ultraviolet irradiance algorithm for OMI that produces noontime surface spectral UV irradiance estimates at four wavelengths, noontime erythemal dose rate (UV index), and the erythemal daily dose. The overpass erythemal daily doses derived from OMI data were compared with the daily doses calculated from the ground-based spectral UV measurements from 18 reference instruments. Two alternative methods for the OMI UV algorithm cloud correction were compared: the plane-parallel cloud model method and the method based on Lambertian equivalent reflectivity. The validation results for the two methods showed some differences, but the results do not imply that one method is categorically superior to the other. For flat, snow-free regions with modest loadings of absorbing aerosols or trace gases, the OMI-derived daily erythemal doses have a median overestimation of 0-10%, and some 60 to 80% of the doses are within +/-20% from the ground reference. For sites significantly affected by absorbing aerosols or trace gases one expects, and observes, bigger positive bias up to 50%. For high-latitude sites the satellite-derived doses are occasionally up to 50% too small because of unrealistically small climatological surface albedo.
Bais Alkiviadis F.
Bernhard Germar
den Outer Peter
Fioletov Vitali
Herman Jay
No associations
LandOfFree
Validation of daily erythemal doses from Ozone Monitoring Instrument with ground-based UV measurement data does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Validation of daily erythemal doses from Ozone Monitoring Instrument with ground-based UV measurement data, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Validation of daily erythemal doses from Ozone Monitoring Instrument with ground-based UV measurement data will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1016904