Using SysRem as an Alternative Photometry Technique

Astronomy and Astrophysics – Astronomy

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

In SysRem, a statistical photometric algorithm for the search for new variable objects (Tamuz et al. 2005; Mazeh et al. 2007), the correction for systematic errors for star i on frame j is expressed as the product of two coefficients, a_j and c_i. SysRem introduces some distortion to the light curves, because unknown variations of variable objects influence c_i and a_j. Shporer et al. (2007) applied SysRem for photometry of a known star with transiting planet, WASP-1b. To minimize the influence of target's variability, only the comparison stars were used for finding a_j; then c_t for the target was determined by minimizing the residuals from the best fitting model of the transit. We investigated further the possibility of using modified SysRem for precise photometry of known targets. Here we report on the results obtained with a version similar to that used by Shporer et al. (2007, hereafter ``SysRem-ph'').
The target was a constant V = 11.12 star from Landolt cluster SA98 (Landolt 1992). Observations were performed on the 0.6-m MMO reflector with the Princeton Instruments E2V, 512× 512, CCD camera, on two nights, with filters V (74 frames) and I (76 frames), with 90 s and 40 s exposures per frame, respectively. The reductions were made by JW and GW. JW compared SysRem-ph with the ``grey'' differential photometry (in which the differences in colors and positions of stars are not taken into account) and with the regular SysRem, and GW - the results of ``grey'' and ``color'' differential photometry (Hardie 1962). Eight comparison stars were used by JW and 12 by GW. The results for the four data sets can be summarized as follows: (1) Regular SysRem produced standard deviations (STDEV) of 3-5 mmag, close to the predicted photon noise (≈ 4 mmag); (2) SysRem-ph gave larger STDEV than regular SysRem (by 0.8-0.9 mmag) but smaller than ``grey'' photometry (by 0.5-1.6 mmag); and (3) ``Color'' differential photometry was better than ``grey'' photometry by 1-2 mmag.
We conclude that for one-color photometry of variable objects with identifiable periods of constancy, SysRem-ph can be a good alternative to the traditional ``grey'' differential photometry. The higher precision of SysRem-ph is due to the capability of SysRem to account for the differences in color and position of the involved stars, without prior knowledge of these differences (Mazeh et al. 2007).

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Using SysRem as an Alternative Photometry Technique does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Using SysRem as an Alternative Photometry Technique, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Using SysRem as an Alternative Photometry Technique will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1427660

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.