Mathematics – Geometric Topology
Scientific paper
2009-05-10
Mathematics
Geometric Topology
9 pages, 2 figures
Scientific paper
We consider surface links in the 4-sphere or 4-space which can be deformed to simple branched coverings of a trivial torus knot, which we call torus-covering-links. Torus-covering-links contain spun $T^2$-knots, turned spun $T^2$-knots, symmetry-spun tori and torus $T^2$-knots. In this paper we study unknotting numbers of torus-covering-links. In particular we give examples of torus-covering-knots whose unknotting number is an arbitrary positive integer.
No associations
LandOfFree
Unknotting surface links which are coverings of a trivial torus knot does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Unknotting surface links which are coverings of a trivial torus knot, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Unknotting surface links which are coverings of a trivial torus knot will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-570350