Mathematics – Functional Analysis
Scientific paper
2012-01-07
Mathematics
Functional Analysis
45 pages, 1 figure
Scientific paper
We consider semidifferentiable (possibly nonsmooth) maps, acting on a subset of a Banach space, that are nonexpansive either in the norm of the space or in the Hilbert's or Thompson's metric inherited from a convex cone. We show that the global uniqueness of the fixed point of the map, as well as the geometric convergence of every orbit to this fixed point, can be inferred from the semidifferential of the map at this point. In particular, we show that the geometric convergence rate of the orbits to the fixed point can be bounded in terms of Bonsall's non-linear spectral radius of the semidifferential. We derive similar results concerning the uniqueness of the eigenline and the geometric convergence of the orbits to it, in the case of positively homogeneous maps acting on the interior of a cone, or of additively homogeneous maps acting on an AM-space with unit. This is motivated in particular by the analysis of dynamic programming operators (Shapley operators) of zero-sum stochastic games.
Akian Marianne
Gaubert Stephane
Nussbaum Roger
No associations
LandOfFree
Uniqueness of the fixed point of nonexpansive semidifferentiable maps does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Uniqueness of the fixed point of nonexpansive semidifferentiable maps, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Uniqueness of the fixed point of nonexpansive semidifferentiable maps will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-634961