Mathematics – Metric Geometry
Scientific paper
1996-05-10
Mathematics
Metric Geometry
Scientific paper
Let $d_1\leq d_2\leq\ldots\leq d_{n\choose 2}$ denote the distances
determined by $n$ points in the plane. It is shown that $\min\sum_i
(d_{i+1}-d_i)^2=O(n^{-6/7})$, where the minimum is taken over all point sets
with minimal distance $d_1 \geq 1$. This bound is asymptotically tight.
pach János
Spencer J. J.
No associations
LandOfFree
Uniformly distributed distances: A geometric application of Jansen's inequality does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Uniformly distributed distances: A geometric application of Jansen's inequality, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Uniformly distributed distances: A geometric application of Jansen's inequality will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-521525