Mathematics – Algebraic Geometry
Scientific paper
1994-11-24
Mathematics
Algebraic Geometry
4 pages, LaTeX. "Final" version. Urges of doubters of people's sense of humor followed; jokes removed. Jokes available from au
Scientific paper
We refine a result of L. Caporaso, J. Harris and B. Mazur, and prove:
Supposons que la conjecture de Lang soit vraie. Soit $K$ un corps des nombres
et $g>1$ un entier. Il existe un nombre $N(K,g)$ tel que si $L$ est une
extension de degr\'e $\leq 3$ de $K$ et $C$ est une courbe lisse projective
conn\`exe, de genre $g$ d\'efinie sur $L$ on a $$\# C(L) < N(K,g). $$
No associations
LandOfFree
Uniformity of rational points over all quadratic fields does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Uniformity of rational points over all quadratic fields, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Uniformity of rational points over all quadratic fields will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-526186