Une caracterisation des fonctions holomorphes injectives en analyse ultrametriqe

Mathematics – General Mathematics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

7 pages

Scientific paper

On montre qu'une fonction holomorphe non-constante $f$ definie sur un sous-espace analytique de $\CC_p$ est injective si et seulement si on a $$ | \frac{f(x) - f(y)}{{x - y)} |^2 = |f'(x) f'(y)|,$$ pour tous $x$ et $y$ distincts. Cette caracterisation demontre l'analogue, pour les fonctions holomorphes, d'une conjecture de A. Escassut et M.C. Sarmant. D'ature part on donne une contre-exemple a cette conjecture, qui concerne les elements bi-analytiques.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Une caracterisation des fonctions holomorphes injectives en analyse ultrametriqe does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Une caracterisation des fonctions holomorphes injectives en analyse ultrametriqe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Une caracterisation des fonctions holomorphes injectives en analyse ultrametriqe will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-658674

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.