Un théorème limite pour les covariances des spins dans le modèle de Sherrington--Kirkpatrick avec champ externe

Mathematics – Probability

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Published at http://dx.doi.org/10.1214/009117906000000665 in the Annals of Probability (http://www.imstat.org/aop/) by the Ins

Scientific paper

10.1214/009117906000000665

On \'{e}tudie la covariance (pour la mesure de Gibbs) des spins en deux sites dans le cas d'un mod\`{e}le de Sherrington--Kirkpatrick avec champ externe; lorsque le nombre de sites du mod\`{e}le tend vers l'infini, une \'{e}valuation asymptotique des moments d'ordre $p$ de cette covariance permet d'obtenir un th\'{e}or\`{e}me limite faible avec une loi limite en g\'{e}n\'{e}ral non gaussienne. We study the covariance (for Gibbs measure) of spins at two sites in the case of a Sherrington--Kirkpatrick model with an external field. When the number of sites of the model grows to infinity, an asymptotic evaluation of the $p$ moments of that covariance allows us to obtain a weak limit theorem, with a generally non-Gaussian limit law.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Un théorème limite pour les covariances des spins dans le modèle de Sherrington--Kirkpatrick avec champ externe does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Un théorème limite pour les covariances des spins dans le modèle de Sherrington--Kirkpatrick avec champ externe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Un théorème limite pour les covariances des spins dans le modèle de Sherrington--Kirkpatrick avec champ externe will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-372787

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.