Type Ia supernova diversity: white dwarf central density as a secondary parameter in three-dimensional delayed detonation models

Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

8 pages, 6 figures, 2 tables, accepted for publication in MNRAS. v2 now includes correct Fig. 6, which was missing from v1

Scientific paper

Delayed detonations of Chandrasekhar-mass white dwarfs (WDs) have been very successful in explaining the spectra, light curves, and the width-luminosity relation of spectroscopically normal Type Ia supernovae (SNe Ia). The ignition of the thermonuclear deflagration flame at the end of the convective carbon "simmering" phase in the core of the WD is still not well understood and much about the ignition kernel distribution remains unknown. Furthermore, the central density at the time of ignition depends on the still uncertain screened carbon fusion reaction rates, the accretion history and cooling time of the progenitor, and the composition. We present the results of twelve high-resolution three-dimensional delayed detonation SN Ia explosion simulations that employ a new criterion to trigger the deflagration to detonation transition (DDT). All simulations trigger our DDT criterion and the resulting delayed detonations unbind the star. We find a trend of increasing iron group element (IGE) production with increasing central density for bright, faint, and intermediate SNe. The total 56Ni yield, however, remains more or less constant, even though increased electron captures at high density result in a decreasing 56Ni mass fraction of the IGE material. We attribute this to an approximate balance of 56Ni producing and destroying effects. The deflagrations that were ignited at higher density initially have a faster growth rate of subgrid-scale turbulence. Hence, the effective flame speed increases faster, which triggers the DDT criterion earlier, at a time when the central density of the expanded star is higher. This leads to an overall increase of IGE production, which off-sets the percental reduction of 56Ni due to neutronization.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Type Ia supernova diversity: white dwarf central density as a secondary parameter in three-dimensional delayed detonation models does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Type Ia supernova diversity: white dwarf central density as a secondary parameter in three-dimensional delayed detonation models, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Type Ia supernova diversity: white dwarf central density as a secondary parameter in three-dimensional delayed detonation models will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-582113

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.