Two-stream-like instability in dilute hot relativistic beams and astrophysical relativistic shocks

Astronomy and Astrophysics – Astrophysics – High Energy Astrophysical Phenomena

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

Relativistic collisionless shocks are believed to be efficient particle accelerators. Nonlinear outcome of the interaction of accelerated particles that run ahead of the shock, the so-called "precursor", with the unperturbed plasma of the shock upstream, is thought to facilitate additional acceleration of these particles and to possibly modify the hydrodynamic structure of the shock. We explore here the linear growth of kinetic modes appearing in the precursor-upstream interaction in relativistic shocks propagating in non and weakly magnetized plasmas: electrostatic two-stream parallel mode and electrostatic oblique modes. These modes are of particular interest because they are the fastest growing modes known in this type of system. Using a simplified distribution function for a dilute ultra-relativistic beam that is relativistically hot in its own rest frame, yet has momenta that are narrowly collimated in the frame of the cold upstream plasma into which it propagates, we identify the fastest growing mode in the full $k$-space and calculate its growth rate. We consider all types of plasma (pairs and ions-electrons) and beam (charged and charge-neutral). We find that unstable electrostatic modes are present in any type of plasma and for any shock parameters. We further find that two modes, one parallel ($k_\perp=0$) and the other one oblique ($k_\perp \sim k_\|$), are competing for dominance and that either one may dominate the growth rate in different regions of the phase space. The dominant mode is determined mostly by the perpendicular spread of the accelerated particle momenta in the upstream frame, which reflects the shock Lorentz factor. The parallel mode becomes more dominant in shocks with lower Lorentz factors (i.e., with larger momentum spreads). We briefly discuss possible implications of our results for external shocks in gamma-ray burst sources.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Two-stream-like instability in dilute hot relativistic beams and astrophysical relativistic shocks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Two-stream-like instability in dilute hot relativistic beams and astrophysical relativistic shocks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Two-stream-like instability in dilute hot relativistic beams and astrophysical relativistic shocks will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-448099

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.