Two-manoeuvres transfers between LEOs and Lissajous orbits in the Earth-Moon system

Mathematics – Dynamical Systems

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

3

Scientific paper

The purpose of this work is to compute transfer trajectories from a given Low Earth Orbit (LEO) to a nominal Lissajous quasi-periodic orbit either around the point L1 or the point L2 in the Earth-Moon system. This is achieved by adopting the Circular Restricted Three-Body Problem (CR3BP) as force model and applying the tools of Dynamical Systems Theory. It is known that the CR3BP admits five equilibrium points, also called Lagrangian points, and a first integral of motion, the Jacobi integral. In the neighbourhood of the equilibrium points L1 and L2, there exist periodic and quasi-periodic orbits and hyperbolic invariant manifolds which emanate from them. In this work, we focus on quasi-periodic Lissajous orbits and on the corresponding stable invariant manifolds. The transfers under study are established on two manoeuvres: the first one is required to leave the LEO, the second one to get either into the Lissajous orbit or into its associated stable manifold. We exploit order 25 Lindstedt-Poincaré series expansions to compute invariant objects, classical manoeuvres and differential correction procedures to build the whole transfer. If part of the trajectory lays on the stable manifold, it turns out that the transfer’s total cost, Δv, and time, t, depend mainly on: the altitude of the LEO;the geometry of the arrival orbit;the point of insertion into the stable manifold;the angle between the velocity of insertion on the manifold and the velocity on it. As example, for LEOs 360 km high and Lissajous orbits of about 6000 km wide, we obtain Δv∈[3.68,4.42]km/sandt∈[5,40]days. As further finding, when the amplitude of the target orbit is large enough, there exist points for which it is more convenient to transfer from the LEO directly to the Lissajous orbit, that is, without inserting into its stable invariant manifold.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Two-manoeuvres transfers between LEOs and Lissajous orbits in the Earth-Moon system does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Two-manoeuvres transfers between LEOs and Lissajous orbits in the Earth-Moon system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Two-manoeuvres transfers between LEOs and Lissajous orbits in the Earth-Moon system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1891768

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.