Mathematics – Differential Geometry
Scientific paper
1999-11-15
Commun. Math. Phys. 217 2001 1, 55-87
Mathematics
Differential Geometry
LaTex, 33 pages, 1 figure
Scientific paper
10.1007/s002200000351
This paper is the continuation of Part I, expanding previous results of math.DG/9803051. This paper uses techniques in noncommutative geometry as developed by Alain Connes in order to study the twisted higher index theory of elliptic operators on orbifold covering spaces of compact good orbifolds, which are invariant under a projective action of the orbifold fundamental group. We also compute the range of the higher cyclic traces on $K$-theory for cocompact Fuchsian groups, which is then applied to determine the range of values of the Connes-Kubo Hall conductance in the discrete model of the quantum Hall effect on the hyperbolic plane. The new phenomenon that we observe in our case is that the Connes-Kubo Hall conductance has plateaux at integral multiples of a fractional valued topological invariant, namely the orbifold Euler characteristic. The set of possible fractions has been determined, and is compared with recently available experimental data.
Marcolli Matilde
Mathai Varghese
No associations
LandOfFree
Twisted higher index theory on good orbifolds, II: fractional quantum numbers does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Twisted higher index theory on good orbifolds, II: fractional quantum numbers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Twisted higher index theory on good orbifolds, II: fractional quantum numbers will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-637160