Mathematics – Number Theory
Scientific paper
2002-11-03
Mathematics
Number Theory
There are no changes in this version, except for added journal information: to be published in the July 2011 issue of the Math
Scientific paper
In Wilson's Theorem the primality of a number hinges on a congruence. We present a similar test where the primality of a number m hinges, instead, on the indivisibility of 4(m-5)! by m. One implication of this theorem is a necessary and sufficient condition for two numbers to be twin primes, a result reminiscent of Clement's theorem but involving indivisibility. MSC: 11A41 and 11A51.
No associations
LandOfFree
Twin Primes and a Primality Test by Indivisibility does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Twin Primes and a Primality Test by Indivisibility, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Twin Primes and a Primality Test by Indivisibility will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-590265