Turbulence and Mixing in the Intracluster Medium

Astronomy and Astrophysics – Astrophysics – High Energy Astrophysical Phenomena

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

8 pages, 2 figs., submitted to the conference proceedings of "The Monster's Fiery Breath;" a follow up of arXiv:0901.4786 focu

Scientific paper

The intracluster medium (ICM) is stably stratified in the hydrodynamic sense with the entropy $s$ increasing outwards. However, thermal conduction along magnetic field lines fundamentally changes the stability of the ICM, leading to the "heat-flux buoyancy instability" when $dT/dr>0$ and the "magnetothermal instability" when $dT/dr<0$. The ICM is thus buoyantly unstable regardless of the signs of $dT/dr$ and $ds/dr$. On the other hand, these temperature-gradient-driven instabilities saturate by reorienting the magnetic field (perpendicular to $\hat{\bf r}$ when $dT/dr>0$ and parallel to $\hat{\bf r}$ when $dT/dr<0$), without generating sustained convection. We show that after an anisotropically conducting plasma reaches this nonlinearly stable magnetic configuration, it experiences a buoyant restoring force that resists further distortions of the magnetic field. This restoring force is analogous to the buoyant restoring force experienced by a stably stratified adiabatic plasma. We argue that in order for a driving mechanism (e.g, galaxy motions or cosmic-ray buoyancy) to overcome this restoring force and generate turbulence in the ICM, the strength of the driving must exceed a threshold, corresponding to turbulent velocities $\gtrsim 10 -100 {km/s}$. For weaker driving, the ICM remains in its nonlinearly stable magnetic configuration, and turbulent mixing is effectively absent. We discuss the implications of these findings for the turbulent diffusion of metals and heat in the ICM.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Turbulence and Mixing in the Intracluster Medium does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Turbulence and Mixing in the Intracluster Medium, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Turbulence and Mixing in the Intracluster Medium will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-11367

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.