Mathematics – Number Theory
Scientific paper
2011-10-28
Mathematics
Number Theory
Scientific paper
It is known that average Siegel theta series lie in the space of Siegel Eisenstein series. Also, every lattice equipped with an even integral quadratic form lies in a maximal lattice. Here we consider average Siegel theta series of degree 2 attached to maximal lattices; we construct maps for which the average theta series is an eigenform. We evaluate the action of these maps on Siegel Eisenstein series of degree 2 (without knowing their Fourier coefficients), and then realise the average theta series as an explicit linear combination of the Eisenstein series.
No associations
LandOfFree
Toward explicit formulas for higher representation numbers of quadratic forms does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Toward explicit formulas for higher representation numbers of quadratic forms, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Toward explicit formulas for higher representation numbers of quadratic forms will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-686349