Mathematics – Algebraic Topology
Scientific paper
2008-09-25
Mathematics
Algebraic Topology
Scientific paper
In this paper we study topology of moduli spaces of tropical curves of genus $g$ with $n$ marked points. We view the moduli spaces as being imbedded in a larger space, which we call the {\it moduli space of metric graphs with $n$ marked points.} We describe the shrinking bridges strong deformation retraction, which leads to a substantial simplification of all these moduli spaces. In the rest of the paper, that reduction is used to analyze the case of genus 1. The corresponding moduli space is presented as a quotient space of a torus with respect to the conjugation ${\mathbb Z}_2$-action; and furthermore, as a homotopy colimit over a simple diagram. The latter allows us to compute all Betti numbers of that moduli space with coefficients in ${\mathbb Z}_2$.
No associations
LandOfFree
Topology of moduli spaces of tropical curves with marked points does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Topology of moduli spaces of tropical curves with marked points, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Topology of moduli spaces of tropical curves with marked points will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-181654