Mathematics – Symplectic Geometry
Scientific paper
2011-09-05
Mathematics
Symplectic Geometry
Scientific paper
Based on the localization result for descendants in rational SFT moduli spaces from our last joint paper, we prove topological recursion relations for the Hamiltonian in SFT of symplectic mapping tori and in local SFT. Combined with the dilaton equation in SFT, we use them to prove a reconstruction theorem for descendants from primaries. While it turns out that (in contrast to Gromov-Witten theory and non-equivariant cylindrical contact homology) the descendant Hamiltonian cannot be computed from the Hamiltonian without descendants alone, we get that the only additional piece of information needed is the first descendant Hamiltonian, which counts holomorphic curves tangent to the symplectic fibre. As already known from the explicit computations in local SFT, it follows that the descendant SFT invariants in general contain more geometric information than the primary SFT invariants.
Fabert Oliver
Rossi Paolo
No associations
LandOfFree
Topological recursion relations in the symplectic field theory of mapping tori and local symplectic field theory does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Topological recursion relations in the symplectic field theory of mapping tori and local symplectic field theory, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Topological recursion relations in the symplectic field theory of mapping tori and local symplectic field theory will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-451044