Mathematics – Optimization and Control
Scientific paper
2011-03-29
Mathematics
Optimization and Control
32 pages, submitted for publication
Scientific paper
The concept of spectral relative entropy rate is introduced for jointly stationary Gaussian processes. Using classical information-theoretic results, we establish a remarkable connection between time and spectral domain relative entropy rates. This naturally leads to a new spectral estimation technique where a multivariate version of the Itakura-Saito distance is employed}. It may be viewed as an extension of the approach, called THREE, introduced by Byrnes, Georgiou and Lindquist in 2000 which, in turn, followed in the footsteps of the Burg-Jaynes Maximum Entropy Method. Spectral estimation is here recast in the form of a constrained spectrum approximation problem where the distance is equal to the processes relative entropy rate. The corresponding solution entails a complexity upper bound which improves on the one so far available in the multichannel framework. Indeed, it is equal to the one featured by THREE in the scalar case. The solution is computed via a globally convergent matricial Newton-type algorithm. Simulations suggest the effectiveness of the new technique in tackling multivariate spectral estimation tasks, especially in the case of short data records.
Ferrante Augusto
Masiero Chiara
Pavon Michele
No associations
LandOfFree
Time and spectral domain relative entropy: A new approach to multivariate spectral estimation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Time and spectral domain relative entropy: A new approach to multivariate spectral estimation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Time and spectral domain relative entropy: A new approach to multivariate spectral estimation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-163169