Tight Bounds for Distributed Functional Monitoring

Computer Science – Data Structures and Algorithms

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

We resolve several fundamental questions in the area of distributed functional monitoring, initiated by Cormode, Muthukrishnan, and Yi (SODA, 2008). In this model there are $k$ sites each tracking their input and communicating with a central coordinator that continuously maintain an approximate output to a function $f$ computed over the union of the inputs. The goal is to minimize the communication. We show the randomized communication complexity of estimating the number of distinct elements up to a $1+\eps$ factor is $\Omega(k/\eps^2)$, improving the previous $\Omega(k + 1/\eps^2)$ bound and matching known upper bounds. For the $p$-th frequency moment $F_p$, $p > 1$, we improve the previous $\Omega(k + 1/\eps^2)$ communication bound to $\tilde{\Omega}(k^{p-1}/\eps^2)$. We obtain similar improvements for heavy hitters, empirical entropy, and other problems. We also show that we can estimate $F_p$, for any $p > 1$, using $\tilde{O}(k^{p-1}\poly(\eps^{-1}))$ communication. This drastically improves upon the previous $\tilde{O}(k^{2p+1}N^{1-2/p} \poly(\eps^{-1}))$ bound of Cormode, Muthukrishnan, and Yi for general $p$, and their $\tilde{O}(k^2/\eps + k^{1.5}/\eps^3)$ bound for $p = 2$. For $p = 2$, our bound resolves their main open question. Our lower bounds are based on new direct sum theorems for approximate majority, and yield significant improvements to problems in the data stream model, improving the bound for estimating $F_p, p > 2,$ in $t$ passes from $\tilde{\Omega}(n^{1-2/p}/(\eps^{2/p} t))$ to $\tilde{\Omega}(n^{1-2/p}/(\eps^{4/p} t))$, giving the first bound for estimating $F_0$ in $t$ passes of $\Omega(1/(\eps^2 t))$ bits of space that does not use the gap-hamming problem, and showing a distribution for the gap-hamming problem with high external information cost or super-polynomial communication, partly answering Question 25 in the Open Problems in Data Streams list.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Tight Bounds for Distributed Functional Monitoring does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Tight Bounds for Distributed Functional Monitoring, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tight Bounds for Distributed Functional Monitoring will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-305238

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.