Tidal perturbations of linear, isentropic oscillations in components of circular-orbit close binaries. I. Synchronously rotating components

Astronomy and Astrophysics – Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

7

Stars: Binaries: Close, Stars: Oscillations, Methods: Analytical

Scientific paper

The effects of the tidal force exerted by a companion on linear, isentropic oscillations of a uniformly rotating star that is a component of a circular-orbit close binary are studied. In contrast to an earlier perturbation method, which is almost only applicable to polytropic models, the procedure starts from an arbitrary physical model of a spherically symmetric equilibrium star. The tidal field and the nonspherical tidally perturbed star are supposed to be determined by means of the theory of dynamic tides, in which the tides are treated as forced, linear, isentropic oscillations of a nonrotating spherically symmetric star. The equations governing linear, isentropic oscillations of a tidally perturbed star are established in the domain instantaneously occupied by the star and are transformed into equations defined in the domain of the spherically symmetric star, so that usual perturbation methods can be applied. The procedure is developed for the general case in which the star's rotation is not necessarily synchronous with the orbital motion of the companion. The second part of the paper is devoted to the case in which the star rotates synchronously and is subject to an equilibrium tide. The eigenfrequencies of radial modes are shown to remain unaffected by the tidal perturbation at the lowest order of approximation. For the lowest degrees l = 1, 2, 3, the degeneracy of the eigenvalue problem of the linear, isentropic oscillations of a spherically symmetric star is lift partially, so that a (2 l + 1)-fold eigenfrequency is split up into (l + 1) eigenfrequencies. A main result is that the eigenfrequencies of the modes belonging to a given degree l are shown to be all split up according to the same pattern. Attention is paid to the linear combinations of eigenfunctions that have to be adopted at order zero when the polar axis of the spherical harmonics of the angular coordinates coincides with the star's rotation axis perpendicular to the orbital plane. The solutions of order zero are also considered in terms of spherical harmonics of angular coordinates for which the polar axis coincides with the tidal axis.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Tidal perturbations of linear, isentropic oscillations in components of circular-orbit close binaries. I. Synchronously rotating components does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Tidal perturbations of linear, isentropic oscillations in components of circular-orbit close binaries. I. Synchronously rotating components, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tidal perturbations of linear, isentropic oscillations in components of circular-orbit close binaries. I. Synchronously rotating components will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1819855

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.