Mathematics – Logic
Scientific paper
Apr 1997
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1997e%26psl.148...45g&link_type=abstract
Earth and Planetary Science Letters, Volume 148, Issue 1, p. 45-57.
Mathematics
Logic
11
Scientific paper
Complex interaction between the Pacific, North American, and Juan de Fuca plates at the northward migrating Mendocino Triple Junction (MTJ) has had a profound effect on the geological evolution of western North America. This paper presents a three-dimensional thermal model for the area around the MTJ that is based on its kinematic evolution, incorporating the effects of an asthenospheric slab window, changes in relative plate motions and the trenchward migration of the Juan de Fuca-Pacific spreading ridge. The thermal equation, including conductive and advective heat transport, is solved numerically using finite differences. Surface heat flow data and the trend in the maximum depth of seismicity south of the MTJ can be quite well explained by the thermal model. A finite lithospheric thickness above the slab window is required to fit heat flow measurements; however, the lack of data west of the San Andreas Fault prevents discriminating between underthrusting and accretionary mechanisms of lithospheric thickening. A comparison between the thermal and recent seismic velocity models reveals that P-wave anomalies in the uppermost mantle have smaller wavelengths and larger amplitudes than predicted if they were purely thermal.
Furlong Kevin
Goes Saskia
Govers Rob
Schwartz Susan
No associations
LandOfFree
Three-dimensional thermal modeling for the Mendocino Triple Junction area does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Three-dimensional thermal modeling for the Mendocino Triple Junction area, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Three-dimensional thermal modeling for the Mendocino Triple Junction area will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1317655