Three-Dimensional Simulations of Type Ia Supernovae

Statistics – Computation

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

We consider a Type Ia supernova explosion originating as a deflagration in the center of a carbon-oxygen Chandrasekhar-mass white dwarf (WD). A three-dimensional (3D) numerical model is based on reactive Euler equations of fluid dynamics coupled with an equation of state for a degenerate matter and a reduced nuclear reaction network. The energy-release model provides the correct propagation velocity for a laminar flame and takes into account carbon burning, as well as nuclear statistical quasi-equilibrium and equilibrium relaxations. The model for the turbulent burning on scales that are not resolved in the simulations is based on the assumption that burning on small scales is driven by the gravity-induced Rayleigh-Taylor (RT) instability. We performed 3D calculations and analysis for the first 1.9 seconds of explosion using an adaptively refined, fully threaded tree structured mesh covering a computational domain of size 6E+9 cm. For the highest-resolution case, the minimum cell size was 2.6 E+5 cm, and the mesh consisted of 100,000,000 computational cells by the end of the simulation. The flame, started as a sphere with the radius 3E+6 cm, becomes very convoluted due to the RT and Kelvin-Helmholtz instabilities on resolved scales and develops multiple buoyant plumes. As the plumes grow, the unburnt material either sinks towards the center or expands more slowly than the burnt material inside the plumes. The material burns at all distances from the center even when the larger flame plumes reach the outer layers of the star. By 1.9 seconds, some of these plumes approach the surface of the expanding WD that extends to (5-6) E+8 cm from the center. About 50% of the material burns out releasing 1.3E+51 ergs of nuclear energy which results in the explosion energy of about 7E+50 ergs at infinity. The expansion velocity at the surface reaches $1.2E+9 cm/s and continues to grow. An extensive convergence study shows that at high resolutions, the results become practically independent on the computational cell size and insensitive to subgrid model parameters.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Three-Dimensional Simulations of Type Ia Supernovae does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Three-Dimensional Simulations of Type Ia Supernovae, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Three-Dimensional Simulations of Type Ia Supernovae will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1676074

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.