Astronomy and Astrophysics – Astronomy
Scientific paper
Oct 2009
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009geoji.179..500b&link_type=abstract
Geophysical Journal International, Volume 179, Issue 6, pp. 500-520.
Astronomy and Astrophysics
Astronomy
5
Numerical Solutions, Radar Interferometry, Fault Zone Rheology, Crustal Structure, Mechanics, Theory, And Modelling
Scientific paper
We present a semi-analytic iterative procedure for evaluating the 3-D deformation due to faults in an arbitrarily heterogeneous elastic half-space. Spatially variable elastic properties are modelled with equivalent body forces and equivalent surface traction in a `homogenized' elastic medium. The displacement field is obtained in the Fourier domain using a semi-analytic Green function. We apply this model to investigate the response of 3-D compliant zones (CZ) around major crustal faults to coseismic stressing by nearby earthquakes. We constrain the two elastic moduli, as well as the geometry of the fault zones by comparing the model predictions to Synthetic Aperture Radar inferferometric (InSAR) data. Our results confirm that the CZ models for the Rodman, Calico and Pinto Mountain faults in the Eastern California Shear Zone (ECSZ) can explain the coseismic InSAR data from both the Landers and the Hector Mine earthquakes. For the Pinto Mountain fault zone, InSAR data suggest a 50 per cent reduction in effective shear modulus and no significant change in Poisson's ratio compared to the ambient crust. The large wavelength of coseismic line-of-sight displacements around the Pinto Mountain fault requires a fairly wide (~1.9 km) CZ extending to a depth of at least 9 km. Best fit for the Calico CZ, north of Galway Dry Lake, is obtained for a 4km deep structure, with a 60 per cent reduction in shear modulus, with no change in Poisson's ratio. We find that the required effective rigidity of the Calico fault zone south of Galway Dry Lake is not as low as that of the northern segment, suggesting along-strike variations of effective elastic moduli within the same fault zone. The ECSZ InSAR data is best explained by CZ models with reduction in both shear and bulk moduli. These observations suggest pervasive and widespread damage around active crustal faults.
Barbot Sylvain
Fialko Yuri
Sandwell David
No associations
LandOfFree
Three-dimensional models of elastostatic deformation in heterogeneous media, with applications to the Eastern California Shear Zone does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Three-dimensional models of elastostatic deformation in heterogeneous media, with applications to the Eastern California Shear Zone, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Three-dimensional models of elastostatic deformation in heterogeneous media, with applications to the Eastern California Shear Zone will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1360354