THH of Thom spectra that are E_\infty ring spectra

Mathematics – Algebraic Topology

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

We identify the topological Hochschild homology (THH) of the Thom spectrum associated to an E_\infty classifying map X -> BG, for G an appropriate group or monoid (e.g. U, O, and F). We deduce the comparison from the observation of McClure, Schwanzl, and Vogt that THH of a cofibrant commutative S-algebra (E_\infty ring spectrum) R can be described as an indexed colimit together with a verification that the Lewis-May operadic Thom spectrum functor preserves indexed colimits. We prove a splitting result THH(Mf) \htp Mf \sma BX_+ which yields a convenient description of THH(MU). This splitting holds even when the classifying map f: X -> BG is only a homotopy commutative A_\infty map, provided that the induced multiplication on Mf extends to an E_\infty ring structure; this permits us to recover Bokstedt's calculation of THH(HZ).

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

THH of Thom spectra that are E_\infty ring spectra does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with THH of Thom spectra that are E_\infty ring spectra, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and THH of Thom spectra that are E_\infty ring spectra will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-374283

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.