Thermal alteration of hydrated minerals during hypervelocity capture to silica aerogel at the flyby speed of Stardust

Mathematics – Logic

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

26

Scientific paper

Outside the Earth's atmosphere, silica aerogel is one of the best materials to capture finegrained extraterrestrial particles in impacts at hypervelocities. Because silica aerogel is a superior insulator, captured grains are inevitably influenced by frictional heat. Therefore, we performed laboratory simulations of hypervelocity capture by using light-gas guns to impact into aerogels fine-grained powders of serpentine, cronstedtite, and Murchison CM2 meteorite. The samples were shot at >6 km s-1 similar to the flyby speed at comet P/Wild-2 in the Stardust mission. We investigated mineralogical changes of each captured particle by using synchrotron radiation X-ray diffraction (SR-XRD), transmission electron microscope (TEM), and field emission scanning electron microscope (FE-SEM). SR-XRD of each grain showed that the majority of the bulk grains keep their original mineralogy. In particular, SR-XRD and TEM investigations clearly exemplified the presence of tochilinite whose decomposition temperature is about 300 °C in the interior of the captured Murchison powder. However, TEM study of these grains also revealed that all the samples experienced melting and vesiculation on the surface. The cronstedtite and the Murchison meteorite powder show remarkable fracturing, disaggregation, melting, and vesiculation. Steep thermal gradients, about 2500 °C/μm were estimated near the surface of the grains (<2 μm thick) by TEM observation. Our data suggests that the interior of >4 μm across residual grains containing abundant materials that inhibit temperature rise would have not experienced >300 °C at the center.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Thermal alteration of hydrated minerals during hypervelocity capture to silica aerogel at the flyby speed of Stardust does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Thermal alteration of hydrated minerals during hypervelocity capture to silica aerogel at the flyby speed of Stardust, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermal alteration of hydrated minerals during hypervelocity capture to silica aerogel at the flyby speed of Stardust will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1824064

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.