Mathematics – Number Theory
Scientific paper
2005-09-27
Commentarii Mathematici Helvetici 83 (2008), no. 3, 603--677.
Mathematics
Number Theory
58 pages
Scientific paper
Let $K$ be a finite unramified extension of $\Qp$ and let $V$ be a crystalline representation of $\mathrm{Gal}(\Qpbar/K)$. In this article, we give a proof of the $C_{\mathrm{EP}}(L,V)$ conjecture for $L \subset \Qp^{\mathrm{ab}}$ as well as a proof of its equivariant version $C_{\mathrm{EP}}(L/K,V)$ for $L \subset \cup_{n=1}^\infty K(\zeta_{p^n})$. The main ingredients are the $\delta_{\Zp}(V)$ conjecture about the integrality of Perrin-Riou's exponential, which we prove using the theory of $(\phi,\Gamma)$-modules, and Iwasawa-theoretic descent techniques used to show that $\delta_{\Zp}(V)$ implies $C_{\mathrm{EP}}(L/K,V)$.
Benois Denis
Berger Laurent
No associations
LandOfFree
Théorie d'Iwasawa des représentations cristallines II does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Théorie d'Iwasawa des représentations cristallines II, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Théorie d'Iwasawa des représentations cristallines II will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-224749