Mathematics – Statistics Theory
Scientific paper
2009-08-30
Mathematics
Statistics Theory
20 pages, 0 figures
Scientific paper
We present theoretical properties of the log-concave maximum likelihood estimator of a density based on an independent and identically distributed sample in $\mathbb{R}^d$. Our study covers both the case where the true underlying density is log-concave, and where this model is misspecified. We begin by showing that for a sequence of log-concave densities, convergence in distribution implies much stronger types of convergence -- in particular, it implies convergence in Hellinger distance and even in certain exponentially weighted total variation norms. In our main result, we prove the existence and uniqueness of a log-concave density that minimises the Kullback--Leibler divergence from the true density over the class all log-concave densities, and also show that the log-concave maximum likelihood estimator converges almost surely in these exponentially weighted total variation norms to this minimiser. In the case of a correctly specified model, this demonstrates a strong type of consistency for the estimator; in a misspecified model, it shows that the estimator converges to the log-concave density that is closest in the Kullback--Leibler sense to the true density.
Cule Madeleine
Samworth Richard
No associations
LandOfFree
Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-622019