Mathematics – Logic
Scientific paper
Dec 1997
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1997aas...19111308a&link_type=abstract
American Astronomical Society, 191st AAS Meeting, #113.08; Bulletin of the American Astronomical Society, Vol. 29, p.1396
Mathematics
Logic
2
Scientific paper
We present the results of a new simulation of the Galactic population of neutron stars: their birthrate, velocity distribution, luminosities, beaming characteristics, and spin evolution. The many simulations in the literature differ from one another primarily in their treatment of the selection effects associated with pulsar detection. Our method, the most realistic to date, goes beyond earlier efforts by retaining the full kinematic, rotational, luminosity, and beaming evolution of each simulated star: ``Monte-Carlo'' neutron stars are created according to assumed distributions (at birth) in spatial coordinates, kick velocity, and magnitudes and orientations of the spin and magnetic field vectors. The neutron stars spin down following an assumed braking law, and their Galactic trajectories are traced to the present epoch. For each star, a pulse waveform is generated using a phenomenological radio-beam model, obviating the need for an arbitrary beaming fraction. Luminosity is assumed to be a parameterized function of period and spin-down rate, with no intrinsic spread, and a parameterized death-line is applied. Interstellar dispersion and scattering consistent with survey instrumentation and the galactic locales of the neutron stars are applied to the pulse waveforms, which are Fourier analyzed and tested for detection following the techniques of real-world surveys. A unique algorithm is used to compare the populations of simulated and known, non-millisecond, pulsars in the multi-dimensional space of observables (any subset of galactic coordinates, dispersion measure, period, spin-down rate, flux, and proper motion). Model parameters are varied, and statistically independent neutron star populations are created until a maximum likelihood model is found. The highlight of this effort is an unbiased determination of the velocity distribution of neutron stars. We discuss the implications of our results for supernova physics, binary evolution, and the nature of gamma -ray transients.
Arzoumanian Zaven
Chernoff David
Cordes James M.
No associations
LandOfFree
The Unbiased Velocity Distribution of Neutron Stars from a Simulation of Pulsar Surveys does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Unbiased Velocity Distribution of Neutron Stars from a Simulation of Pulsar Surveys, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Unbiased Velocity Distribution of Neutron Stars from a Simulation of Pulsar Surveys will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1178292