Mathematics – Probability
Scientific paper
2009-08-11
Mathematics
Probability
23 pages, 6 figures
Scientific paper
We consider the model of Deijfen et al. for competing growth of two infection types in R^d, based on the Richardson model on Z^d. Stochastic ball-shaped infection outbursts transmit the infection type of the center to all points of the ball that are not yet infected. Relevant parameters of the model are the initial infection configuration, the (type-dependent) growth rates and the radius distribution of the infection outbursts. The main question is that of coexistence: Which values of the parameters allow the unbounded growth of both types with positive probability? Deijfen et al. conjectured that the initial configuration basically is irrelevant for this question, and gave a proof for this under strong assumptions on the radius distribution, which e.g. do not include the case of a deterministic radius. Here we give a proof that doesn't rely on these assumptions. One of the tools to be used is a slight generalization of the model with immune regions and delayed initial infection configurations.
Carstens Sebastian
Richthammer Thomas
No associations
LandOfFree
The two-type continuum Richardson model: Non-dependence of the survival of both types on the initial configuration does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The two-type continuum Richardson model: Non-dependence of the survival of both types on the initial configuration, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The two-type continuum Richardson model: Non-dependence of the survival of both types on the initial configuration will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-165397