The three-point correlation function of rich clusters - The reliability of determinations from small samples

Statistics – Computation

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4

Correlation Coefficients, Galactic Clusters, Universe, Astronomical Models, Computational Astrophysics, Galactic Mass

Scientific paper

We investigate to what extent small 3D samples of rich clusters can be expected to constrain the form of the three-point correlation function of such clusters. We generate artificial cluster catalogs (from an underlying lognormal field) in such a way that the clusters should possess a three-point function obeying the Kirkwood superposition relationship. We find that, with the presently available size of cluster samples, we are unable to put tight constraints upon the form of the three-point correlation function. In particular, we cannot strongly rule out the existence of a 'triplet' contribution to the cluster correlation function (which appears in the Kirkwood superposition formula). This has important implications for theories in which clusters are biased tracers of the large-scale mass distribution, because these theories predict a triplet term.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The three-point correlation function of rich clusters - The reliability of determinations from small samples does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The three-point correlation function of rich clusters - The reliability of determinations from small samples, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The three-point correlation function of rich clusters - The reliability of determinations from small samples will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1334956

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.