Mathematics – Classical Analysis and ODEs
Scientific paper
2007-06-12
Mathematics
Classical Analysis and ODEs
22 pages v2: revised version
Scientific paper
In this paper we study the confluence of two regular singular points of the hypergeometric equation into an irregular one. We study the consequence of the divergence of solutions at the irregular singular point for the unfolded system. Our study covers a full neighborhood of the origin in the confluence parameter space. In particular, we show how the divergence of solutions at the irregular singular point explains the presence of logarithmic terms in the solutions at a regular singular point of the unfolded system. For this study, we consider values of the confluence parameter taken in two sectors covering the complex plane. In each sector, we study the monodromy of a first integral of a Riccati system related to the hypergeometric equation. Then, on each sector, we include the presence of logarithmic terms into a continuous phenomenon and view a Stokes multiplier related to a 1-summable solution as the limit of an obstruction that prevents a pair of eigenvectors of the monodromy operators, one at each singular point, to coincide.
Lambert Caroline
Rousseau Christiane
No associations
LandOfFree
The Stokes phenomenon in the confluence of the hypergeometric equation using Riccati equation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Stokes phenomenon in the confluence of the hypergeometric equation using Riccati equation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Stokes phenomenon in the confluence of the hypergeometric equation using Riccati equation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-360174