Mathematics – Functional Analysis
Scientific paper
2008-12-30
Mathematics
Functional Analysis
Scientific paper
In this paper, we achieve the general solution and the generalized
Hyers-Ulam-Rassias stability for the quadratic type functional equation
&f(x+y+2cz)+f(x+y-2cz)+c^2f(2x)+c^2f(2y)
&=2[f(x+y)+c^2f(x+z)+c^2f(x-z)+c^2f(y+z)+c^2f(y-z)] {2.6 cm} for fixed integers
$c$ with $c\neq0,\pm1$, by using the fixed point alternative.
Gordji Eshaghi M.
Khodaei H.
No associations
LandOfFree
The stability of a quadratic type functional equation with the fixed point alternative does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The stability of a quadratic type functional equation with the fixed point alternative, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The stability of a quadratic type functional equation with the fixed point alternative will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-117529