Astronomy and Astrophysics – Astrophysics – Cosmology and Extragalactic Astrophysics
Scientific paper
2010-02-26
Astronomy and Astrophysics
Astrophysics
Cosmology and Extragalactic Astrophysics
19 pages, 15 figures, To appear in MNRAS
Scientific paper
The distribution of cold gas in dark matter haloes is driven by key processes in galaxy formation: gas cooling, galaxy mergers, star formation and reheating of gas by supernovae. We compare the predictions of four different galaxy formation models for the spatial distribution of cold gas. We find that satellite galaxies make little contribution to the abundance or clustering strength of cold gas selected samples, and are far less important than they are in optically selected samples. The halo occupation distribution function of present-day central galaxies with cold gas mass > 10^9 h^-1 Msun is peaked around a halo mass of ~ 10^11 h^-1 Msun, a scale that is set by the AGN suppression of gas cooling. The model predictions for the projected correlation function are in good agreement with measurements from the HI Parkes All-Sky Survey. We compare the effective volume of possible surveys with the Square Kilometre Array with those expected for a redshift survey in the near-infrared. Future redshift surveys using neutral hydrogen emission will be competitive with the most ambitious spectroscopic surveys planned in the near-infrared.
Baugh Carlton M.
Benson Andrew J.
Cole Shaun
Frenk Carlos S.
Kim Han-Seek
No associations
LandOfFree
The spatial distribution of cold gas in hierarchical galaxy formation models does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The spatial distribution of cold gas in hierarchical galaxy formation models, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The spatial distribution of cold gas in hierarchical galaxy formation models will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-628702