The Smallest Solution of φ(30n+1)<φ(30n) is ...

Mathematics – Number Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

3 pages, to appear in the Amer. Math. Monthly

Scientific paper

It is known that there are infinitely many solutions to the inequality \phi(30n+1)<\phi(30n), where \phi is the familiar Euler totient function. However, there are no solutions with n<20,000,000, and computing a solution would seem to involve factoring integers with hundreds of digits. In this note, we describe how to get around the need to factor such large integers in addressing inequalities of this type, and we explicitly compute the smallest solution n of \phi(30n+1)<\phi(30n), a number with 1116 digits.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Smallest Solution of φ(30n+1)<φ(30n) is ... does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Smallest Solution of φ(30n+1)<φ(30n) is ..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Smallest Solution of φ(30n+1)<φ(30n) is ... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-619504

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.