Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics
Scientific paper
2011-10-18
Astronomy and Astrophysics
Astrophysics
Solar and Stellar Astrophysics
4 pages, 3 figures
Scientific paper
10.1051/0004-6361/201116776
Aims. In the first few minutes of a newborn neutron star's life the Hall effect and differential rotation may both be important. We demonstrate that these two ingredients are sufficient for generating a 'shear-Hall instability' and for studying its excitation conditions, growth rates, and characteristic magnetic field patterns. Methods. We numerically solve the induction equation in a spherical shell, with a kinematically prescribed differential rotation profile {\Omega}(s), where s is the cylindrical radius. The Hall term is linearized about an imposed uniform axial field. The linear stability of individual azimuthal modes, both axisymmetric and non-axisymmetric, is then investigated. Results. For the shear-Hall instability to occur, the axial field must be parallel to the rotation axis if {\Omega}(s) decreases outward, whereas if {\Omega}(s) increases outward it must be anti-parallel. The instability draws its energy from the differential rotation, and occurs on the short rotational timescale rather than on the much longer Hall timescale. It operates most efficiently if the Hall time is comparable to the diffusion time. Depending on the precise field strengths B0, either axisymmetric or non-axisymmetric modes may be the most unstable. Conclusions. Even if the differential rotation in newborn neutron stars is quenched within minutes, the shear-Hall instability may nevertheless amplify any seed magnetic fields by many orders of magnitude.
Hollerbach Rainer
Kondić Todor
Rudiger Günther
No associations
LandOfFree
The shear-Hall instability in newborn neutron stars does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The shear-Hall instability in newborn neutron stars, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The shear-Hall instability in newborn neutron stars will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-290637