The Role of Thermohaline Mixing in Intermediate- and Low-Metallicity Globular Clusters

Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

13 Pages, 3 figures. Accepted for publication in the Astrophysical Journal

Scientific paper

It is now widely accepted that globular cluster red giant branch stars owe their strange abundance patterns to a combination of pollution from progenitor stars and in situ extra mixing. In this hybrid theory a first generation of stars imprint abundance patterns into the gas from which a second generation forms. The hybrid theory suggests that extra mixing is operating in both populations and we use the variation of [C/Fe] with luminosity to examine how efficient this mixing is. We investigate the observed red giant branches of M3, M13, M92, M15 and NGC 5466 as a means to test a theory of thermohaline mixing. The second parameter pair M3 and M13 are of intermediate metallicity and our models are able to account for the evolution of carbon along the RGB in both clusters. Although, in order to fit the most carbon-depleted main-sequence stars in M13 we require a model whose initial [C/Fe] abundance leads to a carbon abundance lower than is observed. Furthermore our results suggest that stars in M13 formed with some primary nitrogen (higher C+N+O than stars in M3). In the metal-poor regime only NGC 5466 can be tentatively explained by thermohaline mixing operating in multiple populations. We find thermohaline mixing unable to model the depletion of [C/Fe] with magnitude in M92 and M15. It appears as if extra mixing is occurring before the luminosity function bump in these clusters. To reconcile the data with the models would require first dredge-up to be deeper than found in extant models.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

The Role of Thermohaline Mixing in Intermediate- and Low-Metallicity Globular Clusters does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with The Role of Thermohaline Mixing in Intermediate- and Low-Metallicity Globular Clusters, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Role of Thermohaline Mixing in Intermediate- and Low-Metallicity Globular Clusters will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-88183

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.