Astronomy and Astrophysics – Astronomy
Scientific paper
Jan 2012
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012aas...21930203y&link_type=abstract
American Astronomical Society, AAS Meeting #219, #302.03
Astronomy and Astrophysics
Astronomy
Scientific paper
Massive bursts of stellar activity in starburst environments feed prodigious amount of energy and momentum into the surrounding neutral clouds. With sufficiently intense irradiation from starbursts, the structure of an HII region will be dominated by radiation pressure rather than ionized gas pressure, and radiative energy input in photodissociation regions (PDRs) becomes more important. This state is of considerable interest because of its role in the formation of massive stars, the disruption of giant molecular clouds, and the evolution of starburst galaxies. We study the role of radiation feedback in starburst environments via both theoretical and observational approaches. We argue that radiation pressure is the underlying mechanism for the remarkable constancy of ionization parameters in starburst environments. We also point out that clumping in the neutral material and compression by stellar wind pressure can act to reduce ionization parameters. We use the Cloudy code to determine effective ionization parameters for a population of static dusty HII regions compressed by both radiation pressure and stellar winds. We conclude that the inner starburst region of M82 and the Antennae Galaxies HII regions are both dominated by a combination of radiation pressure and shocked winds. We investigate radiative energy feedback in starburst environments by observing the nearest starburst region 30 Doradus in the LMC. We observe 30 Doradus using NOAO Extremely Wide-Field Infrared Imager (NEWFIRM) with H2 1-0 S(1), Brγ, and [FeII] lines. While H2 can be either radiative or shock excited, the near infrared [FeII] emission line traces shock activities, and the hydrogen recombination line Brγ arises from regions ionized by UV radiation. Therefore ratios of the three emission lines form very useful diagnostics to assess the fraction of radiative and shock feedback. We preliminarily suggest that radiative energy input in the 30 Doradus PDRs is non-negligible.
Matzner Christopher D.
Seaquist Ernest R.
Yeh Sherry
No associations
LandOfFree
The Role of Radiation Feedback in Starburst Environments does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Role of Radiation Feedback in Starburst Environments, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Role of Radiation Feedback in Starburst Environments will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1579799