Astronomy and Astrophysics – Astrophysics – Galaxy Astrophysics
Scientific paper
2009-02-05
Astrophys.J.696:448-470,2009
Astronomy and Astrophysics
Astrophysics
Galaxy Astrophysics
24 pages, including 12 figures and 7 tables; Accepted for publication in ApJ; Minor changes and final corrections to match pro
Scientific paper
10.1088/0004-637X/696/1/448
In a sample of local active galactic nuclei studied at a spatial resolution on the order of 10 pc we show that the interstellar medium traced by the molecular hydrogen v=1-0 S(1) 2.1um line forms a geometrically thick, clumpy disk. The kinematics of the molecular gas reveals general rotation, although an additional significant component of random bulk motion is required by the high local velocity dispersion. The size scale of the typical gas disk is found to have a radius of ~30 pc with a comparable vertical height. Within this radius the average gas mass is estimated to be ~10^7 Msun based on a typical gas mass fraction of 10%, which suggests column densities of Nh ~ 5x10^23 cm^-2. Extinction of the stellar continuum within this same region suggest lower column densities of Nh ~ 2x10^22 cm^-2, indicating that the gas distribution on these scales is dominated by dense clumps. In half of the observed Seyfert galaxies this lower column density is still great enough to obscure the AGN at optical/infrared wavelengths. We conclude, based on the spatial distribution, kinematics, and column densities that the molecular gas observed is spatially mixed with the nuclear stellar population and is likely to be associated with the outer extent of any smaller scale nuclear obscuring structure. Furthermore, we find that the velocity dispersion of the molecular gas is correlated with the star formation rate per unit area, suggesting a link between the two phenomena, and that the gas surface density follows known "Schmidt-Kennicutt" relations. The molecular/dusty structure on these scales may be dynamic since it is possible that the velocity dispersion of the gas, and hence the vertical disk height, is maintained by a short, massive inflow of material into the nuclear region and/or by intense, short-lived nuclear star formation.
Davies Richard I.
Genzel Reinhard
Hicks Erin K. S.
Malkan Matthew A.
Sanchez Muller F.
No associations
LandOfFree
The Role of Molecular Gas in Obscuring Seyfert Active Galactic Nuclei does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Role of Molecular Gas in Obscuring Seyfert Active Galactic Nuclei, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Role of Molecular Gas in Obscuring Seyfert Active Galactic Nuclei will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-250812