Mathematics – Operator Algebras
Scientific paper
2010-01-25
Operator Structures and Dynamical Sysytem, 177-195, Contemporary Mathematics 503(2009)
Mathematics
Operator Algebras
We revised the section 4 and its correspondent part in Introduction in the original paper
Scientific paper
We introduce notions of the Rohlin property and the approximate representability for inclusions of unital $C^*$-algebras. We investigate a dual relation between the Rohlin property and the approximate representability. We prove that a number of classes of unital $C^*$-algebras are closed under inclusions with the Rohlin property, including: AF algebras, AI algebras, AT algebras, and related classes characterized by direct limit decomposition using semiprojective building blocks. $C^*$-algebras with stable rank one. $C^*$-algebras with real rank zero.
Kodaka Kazunori
Osaka Hiroyuki
Teruya Tamotsu
No associations
LandOfFree
The Rohlin property for inclusions of $C^*$-algebras with a finite Watatani index does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Rohlin property for inclusions of $C^*$-algebras with a finite Watatani index, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Rohlin property for inclusions of $C^*$-algebras with a finite Watatani index will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-130228