Mathematics – Optimization and Control
Scientific paper
2009-05-08
Mathematics
Optimization and Control
29 pages, one figure
Scientific paper
Although the \emph{residual method}, or \emph{constrained regularization}, is frequently used in applications, a detailed study of its properties is still missing. This sharply contrasts the progress of the theory of Tikhonov regularization, where a series of new results for regularization in Banach spaces has been published in the recent years. The present paper intends to bridge the gap between the existing theories as far as possible. We develop a stability and convergence theory for the residual method in general topological spaces. In addition, we prove convergence rates in terms of (generalized) Bregman distances, which can also be applied to non-convex regularization functionals. We provide three examples that show the applicability of our theory. The first example is the regularized solution of linear operator equations on $L^p$-spaces, where we show that the results of Tikhonov regularization generalize unchanged to the residual method. As a second example, we consider the problem of density estimation from a finite number of sampling points, using the Wasserstein distance as a fidelity term and an entropy measure as regularization term. It is shown that the densities obtained in this way depend continuously on the location of the sampled points and that the underlying density can be recovered as the number of sampling points tends to infinity. Finally, we apply our theory to compressed sensing. Here, we show the well-posedness of the method and derive convergence rates both for convex and non-convex regularization under rather weak conditions.
Grasmair Markus
Haltmeier Markus
Scherzer Otmar
No associations
LandOfFree
The Residual Method for Regularizing Ill-Posed Problems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The Residual Method for Regularizing Ill-Posed Problems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The Residual Method for Regularizing Ill-Posed Problems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-703282